APPROACH

- Algorithm design technique for solving optimization problems
- Start with a feasible solution
- Repeat the following step until no improvement can be found:
- change the current feasible solution to a feasible solution with a better value of the objective function
- Return the last feasible solution as optimal
- Note: Typically, a change in a current solution is "small" (local search)
- Major difficulty: Local optimum vs. global optimum

EXAMPLE: SIMPLEX METHOD

Linear Programming (LP) Problem:

- optimize a linear function of several variables subject to linear constraints:
- maximize (or minimize) $c_{1} x_{1}+\ldots+c_{n} x_{n}$
- subject to $a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq$ (or \geq or $=$) $b_{i}, i=1, \ldots, m$
$x_{1} \geq 0, \ldots, x_{n} \geq 0$
- The function $z=c_{1} x_{1}+\ldots+c_{n} x_{n}$ is called the objective function;
- constraints $x_{1} \geq 0, \ldots, x_{n} \geq 0$ are called nonnegativity constraints

Possible Outcomes

1. Problem has a finite optimal solution, which may not be unique
2. Problem could be unbounded: the objective function of maximization (minimization) LP problem is unbounded from above (below) on its feasible region
3. Problem could be infeasible: there are no points satisfying all the constraints, i.e. the constraints are contradictory

Extreme Point Theorem:

Any LP problem with a nonempty bounded feasible region has an optimal solution; moreover, an optimal solution can always be found at an extreme point of the problem's feasible region

Example 1 - Final Optimal Solution

maximize $3 x+5 y$

$$
\begin{array}{ll}
\text { subject to } & x+y \leq 4 \\
& x+3 y \leq 6 \\
& x \geq 0, y \geq 0
\end{array}
$$

The
Feasible region is the set of points defined by the constraints
An Optimal Solution to the LP Problem is a point for which the value of the objective function is maximized.

Example 2 - Unbounded problem

FIGURE 10.3 Unbounded feasible region of a linear programming problem with constraints $x+y \geq 4, x+3 y \geq 6, x \geq 0, y \geq 0$, and three level lines of the function $3 x+5 y$.

Example 3 - Unfeasible problem

maximize $3 x+5 y$
subject to $\quad x+y \geq 4$
$x+y \leq 2$
$x \geq 0, y \geq 0$

Simplex Method

- The classic method for solving LP maximization problems; one of the most important algorithms ever invented
- Invented by George Dantzig in 1947
- Based on the iterative improvement idea:
- Generates a sequence of adjacent points of the problem's feasible region with improving values of the objective function until no further improvement is possible

Step 0: Initialization

Step 0.1: convert inequalities
maximize $3 x+5 y$
subject to $x+y \leq 4$

$$
x+3 y \leq 6
$$

$$
x \geq 0, \quad y \geq 0
$$

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x+5 y+0 u+0 v \\
\text { subject to } & x+y+u=4 \\
& x+3 y+v=6 \\
& x \geq 0, y \geq 0, u \geq 0, v \geq 0
\end{array}
$$

Variables u and v, transforming inequality constraints into equality constrains, are called slack variables

Step 0.2: calculate basic feasible solution

- A basic solution to a system of m linear equations in n unknowns $(n \geq m)$ is obtained by setting $n-m$ variables to 0 and solving the resulting system to get the values of the other m variables. The variables set to 0 are called nonbasic; the variables obtained by solving the system are called basic.
- A basic solution is called feasible if all its (basic) variables are nonnegative.
- Example $x+y+u=4$

$$
x+3 y \quad+v=6
$$

$(0,0,4,6)$ is basic feasible solution
(x, y are non basic; u, v are basic)

- There is a 1-1 correspondence between extreme points of LP's feasible region and its basic feasible solutions.
- Calculate value of function at that solution:

$$
3 x+5 y+0 u+0 v=0
$$

Simplex Tableau representation of step 0.2

Simplex Algorithm

- Step 0 [Initialization]

Present a given LP problem in standard form and set up initial tableau.

- Step 1 [Optimality test]

- If all entries in the objective row are nonnegative - stop: the tableau represents an optimal solution.
- Step 2 [Find entering variable]
- Select (the most) negative entry in the objective row.

Mark its column to indicate the entering variable and the pivot column.

- Step 3 [Find departing variable]

- For each positive entry in the pivot column, calculate the θ-ratio by dividing that row's entry in the rightmost column by its entry in the pivot column.
- (If there are no positive entries in the pivot column - stop: the problem is unbounded.)
- Find the row with the smallest θ-ratio, mark this row to indicate the departing variable and the pivot row.
- Step 4 [Form the next tableau]
- Divide all the entries in the pivot row by its entry in the pivot column.
- Subtract from each of the other rows, including the objective row, the new pivot row multiplied by the entry in the pivot column of the row in question.
- Replace the label of the pivot row by the variable's name of the pivot column and go back to Step 1.

Example

Simplex Tableau

Basic feasible solution
z
(0, 0, 4, 6)
0

10
(0, 2, 2, 0)

14

Notes on the Simplex Method

- Finding an initial basic feasible solution may pose a problem
- Theoretical possibility of cycling
- Typical number of iterations is between m and $3 m$, where m is the number of equality constraints in the standard form
- Worse-case efficiency is exponential

Example \#2

		\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}			
		0	2	1	0	4	8		$\boldsymbol{\theta}$ ratio	
$y \leq 3$	a	1	0	1	-1	0	0	1	1	$a=3-y$
$-x+y \leq 2$	y	-1	1	0	1	0	0	2	-2	$b=2+x-y$
$x+2 y=8$	c	3	0	0	-2	1	0	4	$4 / 3$	$c=8-x-2 y$
$2 x+y \leq 10$	d	3	0	0	-1	0	1	8	$8 / 3$	$d=10-2 x-y$
$M A X-x-y=0$	-2	0	0	1	0	0	2		$M A X=x+y$	

		\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}			
		1	3	0	0	1	5		$\boldsymbol{\theta}$ ratio	
$y \leq 3$	x	1	0	1	-1	0	0	1	-1	$a=3-y$
$-x+y \leq 2$	y	0	1	1	0	0	0	3	undef	$b=2+x-y$
$x+2 y=8$	c	0	0	-3	1	1	0	1	1	$c=8-x-2 y$
$2 x+y \leq 10$	d	0	0	-3	2	0	1	5	$5 / 2$	$d=10-2 x-y$
$M A X-x-y=0$	0	0	0	2	-1	0	0	4		MAX $=x+y$

		\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}			
		2	3	0	1	0	3		$\boldsymbol{\theta}$ ratio	
$y \leq 3$	x	1	0	-2	0	1	0	2	-1	$a=3-y$
$-x+y \leq 2$	y	0	1	1	0	0	0	3	3	$b=2+x-y$
$x+2 y=8$	b	0	0	-3	1	1	0	1	$-1 / 3$	$c=8-x-2 y$
$2 x+y \leq 10$	d	0	0	3	0	-2	1	3	1	$d=10-2 x-y$
$M A X-x-y=0$	0	0	-1	0	1	0	5		$M A X=x+y$	

		\mathbf{x}	\mathbf{y}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}			
		4	2	1	4	0	0		$\boldsymbol{\theta}$ ratio	
$y \leq 3$	x	1	0	0	0	$-1 / 3$	$2 / 3$	4	-12	$a=3-y$
$-x+y \leq 2$	y	0	1	0	0	$-2 / 3$	-1	2	-3	$b=2+x-y$
$x+2 y=8$	b	0	0	0	1	-1	1	4	-4	$c=8-x-2 y$
$2 x+y \leq 10$	a	0	0	1	0	$-2 / 3$	$1 / 3$	1	$-3 / 2$	$d=10-2 x-y$
MAX $-x-y=0$	0	0	2	0	-1	1	5		MAX $=x+y$	

