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APPROACH 

• Algorithm design technique for solving optimization problems  
• Start with a feasible solution 
• Repeat the following step until no improvement can be found: 
− change the current feasible solution to a feasible solution with a better 

value of the objective function 
• Return the last feasible solution as optimal 
• Note: Typically, a change in a current solution is “small” (local search)  
• Major difficulty: Local optimum vs. global optimum 

EXAMPLE: SIMPLEX METHOD 

Linear Programming (LP) Problem:  
• optimize a linear function of several variables subject to linear constraints: 
• maximize (or minimize)  c1 x1 + ...+ cn xn    
• subject to                          ai 1x1+ ...+ ain xn  ≤ (or ≥ or =) bi , i = 1,...,m                                 

x1 ≥ 0, ... , xn ≥ 0 
• The function z = c1 x1 + ...+ cn xn  is called the objective function;  
• constraints x1 ≥ 0, ... , xn ≥ 0 are called nonnegativity constraints  

 
Possible Outcomes 
1. Problem has a finite optimal solution, which may not be unique 
2. Problem could be unbounded: the objective function of maximization 

(minimization) LP problem is unbounded from above (below) on its feasible 
region   

3. Problem could be infeasible: there are no points satisfying all the constraints, 
i.e. the constraints are contradictory 

Extreme Point Theorem: 
Any LP problem with a nonempty bounded feasible region has an optimal 
solution; moreover, an optimal solution can always be found at an extreme point 
of the problem's feasible region 
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Example 1 - Final Optimal Solution 
maximize   3x + 5y       subject to x +   y ≤ 4     
      x + 3y ≤ 6  
      x≥0,   y≥0  
The 
Feasible 
region is the 
set of points 
defined by 
the 
constraints 

 

 
An Optimal 
Solution to 
the LP 
Problem is a 
point for 
which the 
value of the 
objective 
function is 
maximized. 

 
 

 
  



CPS 616 ITERATIVE IMPROVEMENTS   10 - 3 

Example 2 - Unbounded problem 

 
 
Example 3 - Unfeasible problem 
maximize     3x + 5y  
subject to     x +  y ≥ 4              
  x +  y ≤ 2                       
  x ≥ 0,  y ≥ 0 
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Simplex Method 
• The classic method for solving LP maximization problems;  

one of the most important algorithms ever invented 
• Invented by George Dantzig in 1947 
• Based on the iterative improvement idea: 
• Generates a sequence of adjacent points of the problem’s feasible region with 

improving values of the objective function until no further improvement is 
possible 

Step 0: Initialization 
Step 0.1: convert inequalities 

maximize   3x + 5y            maximize  3x + 5y + 0u + 0v 

subject to x +   y ≤ 4           subject to    x +   y +  u            = 4  
 x + 3y ≤ 6                 x + 3y          +  v   = 6  
 x≥0,   y≥0                   x≥0,  y≥0,  u≥0,  v≥0 
Variables u and v, transforming inequality constraints into equality constrains, 
are called slack variables  

Step 0.2: calculate basic feasible solution 
• A basic solution to a system of m linear equations in n unknowns (n ≥ m) is 

obtained by setting n – m variables to 0 and solving the resulting system to 
get the values of the other m variables.  The variables set to 0 are called 
nonbasic; the variables obtained by solving the system are called basic.  

• A basic solution is called feasible if all its (basic) variables are nonnegative.  
• Example    x +   y + u         = 4  
        x + 3y        + v  = 6  
    (0,  0,  4,  6) is basic feasible solution  
                           (x, y are non basic; u, v are basic) 
• There is a 1-1 correspondence between extreme points of LP’s feasible region 

and its basic feasible solutions. 
• Calculate value of function at that solution: 
 3x + 5y + 0u + 0v = 0 
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Simplex Tableau representation of step 0.2 
 
  x y u v    

Basic u 1 1 1 0 4  
value of z at 
(0,0,4,6) 

variables v 1 3 0 1 6  
Objective row →  -3 -5 0 0 0 ← 

 ↑ Reverse coefficients    
 
Simplex Algorithm 

• Step 0 [Initialization]   
 Present a given LP problem in standard form and set up initial tableau.  
• Step 1 [Optimality test] 
− If all entries in the objective row are nonnegative — stop: the tableau 

represents an optimal solution. 
• Step 2 [Find entering variable]  
− Select (the most) negative entry in the objective row.   
Mark its column to indicate the entering  variable and the pivot column.  

• Step 3 [Find departing variable]   
− For each positive entry in the pivot column, calculate the θ-ratio by 

dividing that row's entry in the rightmost column by its entry in the pivot 
column.   

− (If there are no positive entries in the pivot column — stop: the problem is 
unbounded.)   

− Find the row with the smallest θ-ratio, mark this row to indicate the 
departing variable and the pivot row.  

• Step 4 [Form the next tableau]  
− Divide all the entries in the pivot row by its entry in the pivot column.  
− Subtract from each of the other rows, including the objective row, the new 

pivot row multiplied by the entry in the pivot column of the row in 
question.  

− Replace the label of the pivot row by the variable's name of the pivot 
column and go back to Step 1. 
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Example 
  

Simplex Tableau Basic feasible solution z 
   

 

(0, 0, 4, 6) 0 

   

 

(0, 2, 2, 0) 10 

   

 

(3, 1, 0, 0) 14 

 
Notes on the Simplex Method 

• Finding an initial basic feasible solution may pose a problem 
• Theoretical possibility of cycling  
• Typical number of iterations is between m and 3m, where m is the number of 

equality constraints in the standard form 
• Worse-case efficiency is exponential 
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Example #2 
 

 
Maximise  
  x+y 
 
For  
  y ≤ 3 
  -x+y ≤  2 
  x+2y ≤  8 
  2x+y ≤ 10 
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x y a b c d 
   

  
0 0 3 2 8 10 

 
θ ratio 

 y ≤ 3 a 0 1 1 0 0 0 3 3 a = 3-y 
-x+y ≤ 2 b -1 1 0 1 0 0 2 2 b = 2+x-y 
x+2y=8 c 1 2 0 0 1 0 8 4 c = 8-x-2y 
2x+y ≤ 10 d 2 1 0 0 0 1 10 10 d = 10-2x-y 

MAX-x-y = 0   -1 -1 0 0 0 0 0   MAX=x+y 

           
  

x y a b c d 
   

  
0 2 1 0 4 8 

 
θ ratio 

 y ≤ 3 a 1 0 1 -1 0 0 1 1 a = 3-y 
-x+y ≤ 2 y -1 1 0 1 0 0 2 -2 b = 2+x-y 
x+2y=8 c 3 0 0 -2 1 0 4 4/3 c = 8-x-2y 
2x+y ≤ 10 d 3 0 0 -1 0 1 8 8/3 d = 10-2x-y 

MAX-x-y = 0   -2 0 0 1 0 0 2   MAX=x+y 

           
  

x y a b c d 
   

  
1 3 0 0 1 5 

 
θ ratio 

 y ≤ 3 x 1 0 1 -1 0 0 1 -1 a = 3-y 
-x+y ≤ 2 y 0 1 1 0 0 0 3 undef b = 2+x-y 
x+2y=8 c 0 0 -3 1 1 0 1 1 c = 8-x-2y 
2x+y ≤ 10 d 0 0 -3 2 0 1 5 5/2 d = 10-2x-y 

MAX-x-y = 0   0 0 2 -1 0 0 4   MAX=x+y 

           
  

x y a b c d 
   

  
2 3 0 1 0 3 

 
θ ratio 

 y ≤ 3 x 1 0 -2 0 1 0 2 -1 a = 3-y 
-x+y ≤ 2 y 0 1 1 0 0 0 3 3 b = 2+x-y 
x+2y=8 b 0 0 -3 1 1 0 1 -1/3 c = 8-x-2y 
2x+y ≤ 10 d 0 0 3 0 -2 1 3 1 d = 10-2x-y 

MAX-x-y = 0   0 0 -1 0 1 0 5   MAX=x+y 

           
  

x y a b c d 
   

  
4 2 1 4 0 0 

 
θ ratio 

 y ≤ 3 x 1 0 0 0 -1/3 2/3 4 -12 a = 3-y 
-x+y ≤ 2 y 0 1 0 0 -2/3 -1 2 -3 b = 2+x-y 
x+2y=8 b 0 0 0 1 -1 1 4 -4 c = 8-x-2y 
2x+y ≤ 10 a 0 0 1 0 -2/3 1/3 1 -3/2 d = 10-2x-y 

MAX-x-y = 0   0 0 2 0 -1 1 5   MAX=x+y 
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