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APPROACH
* Algorithm design technique for solving optimization problems
« Start with a feasible solution

* Repeat the following step until no improvement can be found:

— change the current feasible solution to a feasible solution with a better
value of the objective function

* Return the last feasible solution as optimal
* Note: Typically, a change in a current solution is “small” (local search)
» Major difficulty: Local optimum vs. global optimum

EXAMPLE: SIMPLEX METHOD
Linear Programming (LP) Problem:

» optimize a linear function of several variables subject to linear constraints:
* maximize (or minimize) CyX; + ...+ Cy X,

* subject to Qi1 X1+ ...+ anX, <(or>or=)b;,i=1,.,m
XlZOl LR | ano

e The function z = ¢y X, + ...+ C, X, IS called the objective function;

e constraints x; >0, ..., X, >0 are called nonnegativity constraints

Possible Outcomes

1. Problem has a finite optimal solution, which may not be unique

2. Problem could be unbounded: the objective function of maximization
(minimization) LP problem is unbounded from above (below) on its feasible
region

3. Problem could be infeasible: there are no points satisfying all the constraints,
I.e. the constraints are contradictory

Extreme Point Theorem:

Any LP problem with a nonempty bounded feasible region has an optimal
solution; moreover, an optimal solution can always be found at an extreme point
of the problem's feasible region
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Example 1 - Final Optimal Solution
maximize 3x + 5y subject to X+ y<4
X+3y<6
x>0, y=>0
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FIGURE 10.1 Feasible region of problem (10.2].
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FIGURE 10.2 Solving a two-dimensional linear prograrmming problem geometrically.
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Example 2 - Unbounded problem

¥
(0,4
2,1
(0,0) (6,0 x
3x+ by =24
dx+ by =20

dx+by=14

FIGURE 10.3 Unbounded feasible region of a linear programming problem with
constraints x + v =4, x + 3y =6, x =0, y =0, and three level lines of
the function 3x 4+ 5y.

Example 3 - Unfeasible problem
maximize 3x + 5y
subjectto x+ y>4
x+y<2
x>0, y>0
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Simplex Method

» The classic method for solving LP maximization problems;
one of the most important algorithms ever invented

 Invented by George Dantzig in 1947
» Based on the iterative improvement idea:

» Generates a sequence of adjacent points of the problem’s feasible region with
improving values of the objective function until no further improvement is
possible

Step 0: Initialization

Step 0.1: convert inequalities

maximize 3x + 5y maximize 3x + 5y + 0u + Ov

subjectto x+ y<4 ) subjectto x+ y+ u =4
X+3y<6 X+ 3y +V =6
x>0, y=0 x>0, y>0, u=>0, v>0

Variables u and v, transforming inequality constraints into equality constrains,
are called slack variables

Step 0.2: calculate basic feasible solution

* A basic solution to a system of m linear equations in n unknowns (n > m) is
obtained by setting n — m variables to 0 and solving the resulting system to
get the values of the other m variables. The variables set to O are called
nonbasic; the variables obtained by solving the system are called basic.

» A basic solution is called feasible if all its (basic) variables are nonnegative.
» Example X+ y+u =4

X+ 3y +V =6

(0, 0, 4, 6) is basic feasible solution

(x, y are non basic; u, v are basic)

» There is a 1-1 correspondence between extreme points of LP’s feasible region
and its basic feasible solutions.

e Calculate value of function at that solution:
3Xx+5y+0u+0v=0
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Simplex Tableau representation of step 0.2

X y u Y
Basic u 1 1 1 0 | 4
variables v| 1 3.0 1 1 6 | valueofzat
Objective row — -3 -5 0 0O ! 0 «— (0,0,4,6)

1 Reverse coefficients

Simplex Algorithm

» Step O [Initialization]
Present a given LP problem in standard form and set up initial tableau.

o Step 1 [Optimality test]
— If all entries in the objective row are nonnegative — stop: the tableau
represents an optimal solution.

» Step 2 [Find entering variable]
— Select (the most) negative entry in the objective row.
Mark its column to indicate the entering variable and the pivot column.

» Step 3 [Find departing variable]

— For each positive entry in the pivot column, calculate the 0-ratio by
dividing that row's entry in the rightmost column by its entry in the pivot
column.

— (If there are no positive entries in the pivot column — stop: the problem is
unbounded.)

— Find the row with the smallest 6-ratio, mark this row to indicate the
departing variable and the pivot row.

o Step 4 [Form the next tableau]

— Divide all the entries in the pivot row by its entry in the pivot column.

— Subtract from each of the other rows, including the objective row, the new
pivot row multiplied by the entry in the pivot column of the row in
question.

— Replace the label of the pivot row by the variable's name of the pivot
column and go back to Step 1.
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Example
Simplex Tableau Basic feasible solution Z
X y u Vv
I
ul 1 1 1 o i 4
|
«— V| 1 3 0 1 i 6 (0, 0, 4, 6) 0
F—_—_——— e —— = g
-3 -5 0 0 i 0
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2 1 1
<« U 3 0 1 —g : 2
|
vyl 1 o 1.,
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4 5 |
3 0 0 3 i 10
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3 11
X 1 0 E _E : 3
|
1 1 1 (3,1,0,0) 14
y 0 1 -5 5 : 1
e o o o — — — — —— — ——— _:____
0 0 2 1114

Notes on the Simplex Method

 Finding an initial basic feasible solution may pose a problem
» Theoretical possibility of cycling

» Typical number of iterations is between m and 3m, where m is the number of
equality constraints in the standard form

» Worse-case efficiency is exponential
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X y a b c d
0 0 3 2 8 10 0 ratio
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