APPROACH

- Algorithm design technique for solving optimization problems
- Start with a feasible solution
- Repeat the following step until no improvement can be found:
 - change the current feasible solution to a feasible solution with a better value of the objective function
- Return the last feasible solution as optimal
- Note: Typically, a change in a current solution is "small" (local search)
- Major difficulty: Local optimum vs. global optimum

EXAMPLE: SIMPLEX METHOD

<u>Linear Programming (LP) Problem:</u>

- optimize a linear function of several variables subject to linear constraints:
- maximize (or minimize) $c_1 x_1 + ... + c_n x_n$
- subject to $a_{i} x_{1} + ... + a_{in} x_{n} \le (\text{or } \ge \text{or } =) b_{i}, i = 1,...,m$ $x_{1} \ge 0, ..., x_{n} \ge 0$
- The function $z = c_1 x_1 + ... + c_n x_n$ is called the *objective function*;
- constraints $x_1 \ge 0$, ..., $x_n \ge 0$ are called *nonnegativity constraints*

Possible Outcomes

- 1. Problem has a finite optimal solution, which may not be unique
- 2. Problem could be unbounded: the objective function of maximization (minimization) LP problem is unbounded from above (below) on its feasible region
- 3. Problem could be infeasible: there are no points satisfying all the constraints, i.e. the constraints are contradictory

Extreme Point Theorem:

Any LP problem with a nonempty bounded feasible region has an optimal solution; moreover, an optimal solution can always be found at an *extreme point* of the problem's feasible region

Example 1 - Final Optimal Solution

maximize 3x + 5y

subject to

 $x + y \le 4$

 $\begin{array}{l}
 x + 3y \le 6 \\
 x \ge 0, \quad y \ge 0
 \end{array}$

V.

The <u>Feasible</u> <u>region</u> is the set of points defined by the constraints

FIGURE 10.1 Feasible region of problem (10.2).

An *Optimal Solution* to the LP
Problem is a point for which the value of the objective function is maximized.

FIGURE 10.2 Solving a two-dimensional linear programming problem geometrically.

Example 2 - Unbounded problem

FIGURE 10.3 Unbounded feasible region of a linear programming problem with constraints $x + y \ge 4$, $x + 3y \ge 6$, $x \ge 0$, $y \ge 0$, and three level lines of the function 3x + 5y.

Example 3 - Unfeasible problem

maximize 3x + 5ysubject to $x + y \ge 4$ $x + y \le 2$ $x \ge 0, y \ge 0$

Simplex Method

- The classic method for solving LP **maximization** problems; one of the most important algorithms ever invented
- Invented by George Dantzig in 1947
- Based on the iterative improvement idea:
- Generates a sequence of adjacent points of the problem's feasible region with improving values of the objective function until no further improvement is possible

Step 0: Initialization

Step 0.1: convert inequalities

maximize
$$3x + 5y$$
 maximize $3x + 5y + 0u + 0v$
subject to $x + y \le 4$ subject to $x + y + u = 4$
 $x + 3y \le 6$ $x + 3y + v = 6$
 $x \ge 0, y \ge 0, u \ge 0, v \ge 0$

Variables *u* and *v*, transforming inequality constraints into equality constrains, are called *slack variables*

Step 0.2: calculate basic feasible solution

- A *basic solution* to a system of m linear equations in n unknowns (n ≥ m) is obtained by setting n m variables to 0 and solving the resulting system to get the values of the other m variables. The variables set to 0 are called *nonbasic*; the variables obtained by solving the system are called *basic*.
- A basic solution is called *feasible* if all its (basic) variables are nonnegative.

• Example
$$x + y + u = 4$$

 $x + 3y + v = 6$
(0, 0, 4, 6) is basic feasible solution
(x, y are non basic; u, v are basic)

- There is a 1-1 correspondence between extreme points of LP's feasible region and its basic feasible solutions.
- Calculate value of function at that solution:

$$3x + 5y + 0u + 0v = 0$$

Simplex Tableau representation of step 0.2

Simplex Algorithm

• Step 0 [Initialization]

Present a given LP problem in standard form and set up initial tableau.

• Step 1 [Optimality test]

If all entries in the objective row are nonnegative — stop: the tableau represents an optimal solution.

• Step 2 [Find entering variable]

Select (the most) negative entry in the objective row.
 Mark its column to indicate the entering variable and the pivot column.

• Step 3 [Find departing variable]

- For each positive entry in the pivot column, calculate the θ -ratio by dividing that row's entry in the rightmost column by its entry in the pivot column.
- (If there are no positive entries in the pivot column stop: the problem is unbounded.)
- Find the row with the smallest θ -ratio, mark this row to indicate the departing variable and the pivot row.

• Step 4 [Form the next tableau]

- Divide all the entries in the pivot row by its entry in the pivot column.
- Subtract from each of the other rows, including the objective row, the new pivot row multiplied by the entry in the pivot column of the row in question.
- Replace the label of the pivot row by the variable's name of the pivot column and go back to Step 1.

Example

Simplex Tableau

Basic feasible solution

Z

$$(0, 0, 4, 6)$$
 0

Notes on the Simplex Method

- Finding an initial basic feasible solution may pose a problem
- Theoretical possibility of cycling
- Typical number of iterations is between m and 3m, where m is the number of equality constraints in the standard form
- Worse-case efficiency is exponential

Example #2

Maximise x+y

For

$$y \le 3$$

 $-x+y \le 2$
 $x+2y \le 8$
 $2x+y \le 10$

 $\begin{array}{c}
y \\
-x+y=2 \\
x=0 \\
x+y=2 \\
y=0
\end{array}$

		x	у	а	b	С	d			
		0	0	3	2	8	10		θ ratio	
y ≤ 3	а	0	1	1	0	0	0	3	3	a = 3-y
-x+y ≤ 2	b	-1	1	0	1	0	0	2	2	b = 2+x-y
x+2y=8	С	1	2	0	0	1	0	8	4	c = 8-x-2y
2x+y ≤ 10	d	2	1	0	0	0	1	10	10	d = 10-2x-y
MAX-x-y=0		-1	-1	0	0	0	0	0		MAX=x+y
		x	у	а	b	С	d			
		0	2	1	0	4	8		θ ratio	
y ≤ 3	а	1	0	1	-1	0	0	1	1	a = 3-y
-x+y ≤ 2	У	-1	1	0	1	0	0	2	-2	b = 2+x-y
x+2y=8	С	3	0	0	-2	1	0	4	4/3	c = 8-x-2y
2x+y ≤ 10	d	3	0	0	-1	0	1	8	8/3	d = 10-2x-y
MAX-x-y=0		-2	0	0	1	0	0	2		MAX=x+y
										_
		x	у	а	b	С	d			
		1	3	0	0	1	5		θ ratio	
y ≤ 3	Х	1	0	1	-1	0	0	1	-1	a = 3-y
-x+y ≤ 2	У	0	1	1	0	0	0	3	undef	b = 2+x-y
x+2y=8	С	0	0	-3	1	1	0	1	1	c = 8-x-2y
2x+y ≤ 10	d	0	0	-3	2	0	1	5	5/2	d = 10-2x-y
MAX-x-y=0		0	0	2	-1	0	0	4		MAX=x+y
										_
		x	у	а	b	С	d			
		2	3	0	1	0	3		θ ratio	
y ≤ 3	х	1	0	-2	0	1	0	2	-1	a = 3-y
-x+y ≤ 2	У	0	1	1	0	0	0	3	3	b = 2+x-y
x+2y=8	b	0	0	-3	1	1	0	1	-1/3	c = 8-x-2y
2x+y ≤ 10	d	0	0	3	0	-2	1	3	1	d = 10-2x-y
MAX-x-y=0		0	0	-1	0	1	0	5		MAX=x+y
										_
		X	у	а	b	С	d			
		4	2	1	4	0	0		θ ratio	
y ≤ 3	Х	1	0	0	0	-1/3	2/3	4	-12	a = 3-y
-x+y ≤ 2	У	0	1	0	0	-2/3	-1	2	-3	b = 2+x-y
x+2y=8	b	0	0	0	1	-1	1	4	-4	c = 8-x-2y
2x+y ≤ 10	а	0	0	1	0	-2/3	1/3	1	-3/2	d = 10-2x-y
MAX-x-y=0		0	0	2	0	-1	1	5		MAX=x+y