

CPS 616 W2015 MIDTERM SOLUTIONS 1

PART 1 - MULTIPLE CHOICE

Questions

1. (2 marks) Is this graph:

1 2 6

8
3

7 5

4

A. Weighted and connected

B. Weighted and not connected

C. Unweighted and connected

D. Unweighted and not connected

2. (2 marks) Is this graph:

a b c

d
f

h g

e

A. Directed and cyclical

B. Directed and acyclical

C. Undirected and cyclical

D. Undirected and acyclical

3. (3 marks) Which one of these sequences of vertices was not generated from a DFS

(Depth First Search) traversal of the graph on the left? Assume ties are broken by the

alphabetical order of the matrices.

a b c

d
f

h g

e

A. b, a, f, e, c, d, g, h

B. a, b, c, d, g, e, f, h

C. d, c, b, a, f, e, g, h

D. e, c, d, g, h, f, a, b

4. (3 marks) Which one of these sequences of vertices was generated from a BFS (Breadth

First Search) traversal of the graph on the left? Assume ties are broken by the alphabetical

order of the matrices.

a b c

d
f

h g

e

A. c, b, e, d, a, f, g, h

B. a, b, f, c, d, e, g, h

C. e, c, f, g, b, d, a, h

D. h, g, d, e, c, b, f, a

CPS 616 W2015 MIDTERM SOLUTIONS 2

5. (2 marks) Which is the best (i.e. fastest) complexity for an algorithm:

A. O(n log2n)

B. O(n)

C. O(n2)

D. O(2n)

6. (3 marks) What is the exact cost of this algorithm as a function of n:

 myloops (n)

 for i=0 to n-1 do

 for j=i downto 0 do

 // the basic operation is here

A. n(n-1)/2

B. n2

C. n2/2

D. n(n+1)/2

7. (4 marks) Assuming that the basic operation in this algorithm is the number of function

calls of mysum, what is the asymptotic cost of this algorithm as a function of n:

 mysum (n)

 if n=0 or n=1 return n

 else return mysum(n div 2) + mysum(n div 2)

A. O(log2n)

B. O(n)

C. O(n2)

D. O(2n)

8. (2 marks) Do these two algorithms cost the same asymptotically:

 sum1(n)

 result = 0

 for i=1 to n do

 result = result + i

 return result

 sum2(n)

 if n=0 return 0

 else return sum2(n-1) + n

A. Yes

B. No

CPS 616 W2015 MIDTERM SOLUTIONS 3

PART 2 - SHORT ANSWERS

9. (2 marks) You have been asked to improve an algorithm which manipulates a high

volume of data and which is running much too slowly. You analysed this algorithm

mathematically and proved that its complexity was O(n3). You then made some radical

changes to it, analyzed it again and concluded that its new complexity was O(n2). Is this

good news? explain your answer.

 Yes it is good news: when n is large enough, which is probably the case here since we are

dealing with a high volume of data, O(n2) is significantly faster than O(n3).

10. (3 marks) You have continued your mathematical analysis of the algorithm you revised

in the previous question and have now concluded that its complexity is (n2). Is this

good news? explain your answer.

 No this is not good news: if the algorithm is (n2) this means that in addition to having a

quadratic upper bound, it has a quadratic lower bound. So the asymptotic performance of

this particular algorithm cannot be improved in a significant way.

11. (3 marks) Can you design an O(n2) algorithm to generate all the possible bit strings of

length n? Explain your answer

 No: there are 2n bit strings of length n, so the size of the solution to this problem is O(2n).

It is not possible to have an O(n2) algorithm which generates 2n solutions.

CPS 616 W2015 MIDTERM SOLUTIONS 4

12. Here is an algorithm to find the position of a substring in a string.

 // This function returns the positon of "sub" in "string"

 // or the size of string if sub is not a substring of string

 substring (sub, string)

 n=length(string)

 m=length(sub)

 for i=0 to n-m-1 do

 matchedchars=0

 for j=0 to m-1 do

 if sub[j]=string[i+j] matchedchars = matchedchars+1

 if matchedchars=m return i

 return n

a) (1 mark) What is the size of this algorithm? (i.e. what variables with the cost be a

function of?)

 n and m

b) (1 mark) Circle the basic operation of this algorithm which will be used to compute its

complexity

 See highlight

c) (2 marks) What is the best case cost of this algorithm and when does it happen?

 The best case scenario is when string starts with sub. This will be detected at i=0, and

right after the inner loop has executed once. The best case cost will be 1×m = m

d) (2 marks) What is the worst case cost of this algorithm and when does it happen?

 The worst case scenario is when sub is not in the string but the entire sub must be

checked at each iteration of the outer loop to discover this. For example:

o string = “0…01” (with n-1 0’s)

o sub = “0…02” (with m-1 0’s)

Each inner loop will be fully executed m times

The outer loop will also be fully executed n-m time

So the cost is (n-m)×m

Another worst case scenario with the same cost would be

o string = “0…01” (with n-1 0’s)

o sub = “0…01” (with m-1 0’s)

e) (2 marks) What is the average case cost of this algorithm?

 (n-m)×m/2 if the sub is found in the middle of string

f) (5 marks) Rewrite this algorithm to improve its average case complexity

 substring (sub, string)

 n=length(string)

 m=length(sub)

 for i=0 to n-m-1 do

 matchedchars=0

// Replacement for for loop:

 while (matchedchars <m and

 sub[matchedchars]=string[i+ matchedchars]) do

 matchedchars = matchedchars+1

 if matchedchars=m return i

 return n

g) (3 marks) Explain why your new algorithm is faster

 At each starting point i in string, this algorithm stops comparing sub with string as soon

as they stop matching, instead of comparing the entire sub with the entire string[i..i+m-10

size m

